Imprints of cosmic tensions in reconstructed gravity

  • Silvestri, A. & Trodden, M. Approaches to understanding cosmic acceleration. Program delegate. Phys. 72096901 (2009).

    ADS MathSciNet Google Scholar article

  • Joyce, A.; Jane, b. Khoury, J. and Truden, M.; Beyond the cosmological standard model. Phys. re / count. 5681–98 (2015).

    ADS MathSciNet Google Scholar article

  • Koyama, K. Cosmological tests of modified gravity. Program delegate. Phys. 79046902 (2016).

    Article ADS Scholar from Google

  • Aghanim, N. et al. Planck results 2018. Sixth. cosmic parameters. Astron. astronomy. 641A6 (2020).

    Google Scholar article

  • Reese, AG et al. Comprehensive measurement of the local value of the Hubble constant with an uncertainty of 1 km/sec/Mpc from the Hubble Space Telescope and the SH0ES team. astronomy. G Lett. 934L7 (2022).

  • Abdullah, E et al. Entangled cosmology: a review of the particle physics, astrophysics, and cosmology associated with cosmic tensions and anomalies. J. High Power Astro. 3449-211 (2022).

    Article ADS Scholar from Google

  • Friedman, W.L. et al. Red giant branch head (TRGB) calibration. Previously printed at https://arxiv.org/abs/2002.01550 (2020).

  • Friedman, W.L. Measurements of the Hubble Constant: Tensions in Perspective. astronomy. c. 91916 (2021).

    Article ADS Scholar from Google

  • Abbott, TMC et al. Results of the third year Dark Energy Survey: Cosmological Constraints from Galaxy Clustering and Weak Lensing. Preprint at https://arxiv.org/abs/2105.13549 (2021).

  • Asghari, M et al. KiDS-1000 cosmology: limitations of cosmological shear and comparison of two-point statistics. Print advance at https://arxiv.org/abs/2007.15633 (2020).

  • Hikage, C, et al. Cosmology of cosmic shear capacity spectra with first year data from the Subaru Hyper Suprime-Cam. Year of Publication. Astron. Jpn Corporation 7143 (2019).

    Article ADS Scholar from Google

  • Efstathiou, G. & Lemos, P. Statistical discrepancies in the KiDS-450 dataset. Monday. no. R. Astron. a company 476151-157 (2018).

    Article ADS Scholar from Google

  • Efstathiou, G. A closed perspective on the Hubble tension (with comments from the SH0ES team). Print advance at https://arxiv.org/abs/2007.10716 (2020).

  • Will, CM The confrontation between general relativity and experiment. Living Rev. 174 (2014).

    MATH Google Scholar article

  • Abbott, B.B. et al. Observation of gravitational waves from a black hole binary merger. Phys. Rev. Litt. 116061102 (2016).

    ADS MathSciNet Google Scholar article

  • Abbott, b. et al. GW170817: Observation of gravitational waves from an inspiring binary neutron star. Phys. Rev. Litt. 119161101 (2017).

    Article ADS Scholar from Google

  • Akiyama, K, et al. First results from the M87 Event Horizon Telescope. I. The shadow of a supermassive black hole. astronomy. G Lett. 875L1 (2019).

    Article ADS Scholar from Google

  • Reese, AG et al. Observational evidence from supernovae of the accelerating and cosmologically constant universe. Astron. c. 1161009-1038 (1998).

    Article ADS Scholar from Google

  • Perlmutter, S et al. Ω and F measurements from 42 high redshift supernovae. astronomy. c. 517565-586 (1999).

    Article ADS Math Scholar from Google

  • Burgess, C.B. The Cosmological Constant Problem: Why Dark Energy Is Hard to Obtain from Microphysics. in 100 Summer School of Physics: Post-Planck Cosmology 149–197 (eds. Deffayet, C et al.) (Oxford University Press, 2015).

  • Horndeski, G.W. Quadratic tensor field equations in four-dimensional space. Int J. Theor. Phys. 10363-384 (1974).

    Article MathSciNet Google Scholar

  • Vainshtein, A.I. For the uncoated gravitational mass problem. Phys. Lett. B39393–394 (1972).

    Article ADS Scholar from Google

  • Damour, T. & Polyakov, A.M.: Thread dilation and least coupling principle. we eat. Phys. B 423532-558 (1994).

    Article ADS Math Scholar from Google

  • Khoury, J. and Weltman, A.; Chameleon Fields: Surprises await for gravity tests in space. Phys. Rev. Litt. 93171104 (2004).

    Article ADS Scholar from Google

  • Hinterbichler, K. & Khoury, J. Symmetron Fields: Sifting Long-Range Forces Through Local Symmetry Restoration. Phys. Rev. Litt. 104231301 (2010).

    Article ADS Scholar from Google

  • Amendola, L., Kunz, M. & Sapone, D. Measurement of the dark side (with weak lenses). J. Cosmoll. astropart. Phys. 04013 (2008).

  • Bertschinger, E. & Zukin, P. Distinguish between modified gravity and dark energy. Phys. Rev. D 78024015 (2008).

    Article ADS Scholar from Google

  • Pogosian L, Silvestri A, Koyama K. And Chow, J-B. How can deviations from general relativity be optimally identified in the evolution of cosmic perturbations? Phys. Rev. D 81104023 (2010).

    Article ADS Scholar from Google

  • Gubitosi, G., Piazza, F. & Vernizzi, F. Effective field theory of dark energy. J. Cosmoll. astropart. Phys. 02032 (2013).

  • Bloomfield JK, Flanagan EE, Park M, Watson S. Dark energy or modified gravity? Effective field theory approach. J. Cosmoll. astropart. Phys. 1308010 (2013).

    ADS MathSciNet Google Scholar article

  • Gleyzes, J., Langlois, D. & Vernizzi, F. A standardized description of dark energy. Int J. Mod. Phys. Dr 231443010 (2015).

    Article ADS MathSciNet MATH Google Scholar

  • Bellini, E. & Sawicki, I. Maximum freedom at minimum cost: Large-scale linear structure in general modifications of gravity. J. Cosmoll. astropart. Phys. 07050 (2014).

  • Zhao, G. -B., Pogosian, L., Silvestri, A. & Zylberberg, J. Searching for modified growth patterns using cross-sectional surveys. Phys. Rev. D 79083513 (2009).

    Article ADS Scholar from Google

  • Hojjati, A., Pogosian, L. & Zhao, G.-B. Gravity testing with CAMB and CosmoMC. J. Cosmoll. astropart. Phys. 08005 (2011).

  • Hu, B., Raveri, M., Frusciante, N. & Silvestri, A. Effective field theory of cosmic acceleration: an application in CAMB. Phys. Rev. D 89103530 (2014).

    Article ADS Scholar from Google

  • Zumalacarregui, M., Bellini, E., Sawicki, I. & Lesgourgues, J. hi_class: Horndeski in a cosmological linear inequality solution regime. Preprint at https://arxiv.org/abs/1605.06102 (2016).

  • Song, Y. -S. et al. Integration of weak lensing and exotic velocity measurements in a test of general relativity. Phys. Rev. D 84083523 (2011).

    Article ADS Scholar from Google

  • Saltas I.D., Sawicki I., Amendola L. and Kunz, M. Anisotropic stress as a signature of non-standard propagation of gravitational waves. Phys. Rev. Litt. 113191101 (2014).

    Article ADS Scholar from Google

  • Pogosian, L. & Silvestri, A. What can cosmology tell us about gravity? Horndeski’s restriction to Σ and μ. Phys. Rev. D 94104014 (2016).

    ADS MathSciNet Google Scholar article

  • Silvestri, A., Pogosian, L. & Buniy, R. V. A practical approach to cosmological perturbations in modified gravity. Phys. Rev. D 87104015 (2013).

    Article ADS Scholar from Google

  • Espejo, J.; et al. Large-scale structure phenomena in numerical tensor theories: prior covariance wFromand Σ f M in Horndsky. Phys. Rev. D 99023512 (2019).

    Article ADS Scholar from Google

  • Gleyzes, J., Langlois, D., Mancarella, M. & Vernizzi, F. Active theory of dark energy in redshift survey gauges. J. Cosmoll. astropart. Phys. 02056 (2016).

  • Abbott, B.B. et al. Gravitational waves and gamma rays from a neutron star binary merger: GW170817 and GRB 170817A. astronomy. c. 848L13 (2017).

    Article ADS Scholar from Google

  • Deffayet, C., Esposito-Farese, G. & Vikman, A. Covariant Galileo. Phys. Rev. D 79084003 (2009).

    Article ADS Scholar from Google

  • Deffayet, C., Pujolas, O., Sawicki, I. & Vikman, A. Incomplete dark energy from kinetic gravitational braiding. J. Cosmoll. astropart. Phys. 10026 (2010).

  • Linder, Non-Gravity EV. J. Cosmoll. astropart. Phys. 03005 (2018).

    Article ADS MathSciNet MATH Google Scholar

  • Peroni S, Koyama K, Bogosian L, Raveri M, and Silvestri A. Phys. Rev. D 97043519 (2018).

    ADS MathSciNet Google Scholar article

  • Zucca, A., Pogosian, L., Silvestri, A. & Zhao, G.-B. MGCAMB with massive neutrinos and dynamic dark energy. J. Cosmoll. astropart. Phys. 05001 (2019).

    Article ADS MathSciNet MATH Google Scholar

  • Lewis, A. & Bridle, S. Cosmological parameters from the CMB and other data: a Monte Carlo approach. Phys. Rev. D 66103511 (2002).

    Article ADS Scholar from Google

  • Lewis, A.; GetDist: A Python package for Monte Carlo sample analysis (2019); https://getdist.readthedocs.io

  • Leave a Reply

    %d bloggers like this: