Silvestri, A. & Trodden, M. Approaches to understanding cosmic acceleration. *Program delegate. Phys.* **72**096901 (2009).

Joyce, A.; Jane, b. Khoury, J. and Truden, M.; Beyond the cosmological standard model. *Phys. re / count.* **568**1–98 (2015).

Koyama, K. Cosmological tests of modified gravity. *Program delegate. Phys.* **79**046902 (2016).

Aghanim, N. et al. Planck results 2018. Sixth. cosmic parameters. *Astron. astronomy.* **641**A6 (2020).

Reese, AG et al. Comprehensive measurement of the local value of the Hubble constant with an uncertainty of 1 km/sec/Mpc from the Hubble Space Telescope and the SH0ES team. *astronomy. G Lett.* **934**L7 (2022).

Abdullah, E et al. Entangled cosmology: a review of the particle physics, astrophysics, and cosmology associated with cosmic tensions and anomalies. *J. High Power Astro.* **34**49-211 (2022).

Friedman, W.L. et al. Red giant branch head (TRGB) calibration. Previously printed at https://arxiv.org/abs/2002.01550 (2020).

Friedman, W.L. Measurements of the Hubble Constant: Tensions in Perspective. *astronomy. c.* **919**16 (2021).

Abbott, TMC et al. Results of the third year Dark Energy Survey: Cosmological Constraints from Galaxy Clustering and Weak Lensing. Preprint at https://arxiv.org/abs/2105.13549 (2021).

Asghari, M et al. KiDS-1000 cosmology: limitations of cosmological shear and comparison of two-point statistics. Print advance at https://arxiv.org/abs/2007.15633 (2020).

Hikage, C, et al. Cosmology of cosmic shear capacity spectra with first year data from the Subaru Hyper Suprime-Cam. *Year of Publication. Astron. Jpn Corporation* **71**43 (2019).

Efstathiou, G. & Lemos, P. Statistical discrepancies in the KiDS-450 dataset. *Monday. no. R. Astron. a company* **476**151-157 (2018).

Efstathiou, G. A closed perspective on the Hubble tension (with comments from the SH0ES team). Print advance at https://arxiv.org/abs/2007.10716 (2020).

Will, CM The confrontation between general relativity and experiment. *Living Rev.* **17**4 (2014).

Abbott, B.B. et al. Observation of gravitational waves from a black hole binary merger. *Phys. Rev. Litt.* **116**061102 (2016).

Abbott, b. et al. GW170817: Observation of gravitational waves from an inspiring binary neutron star. *Phys. Rev. Litt.* **119**161101 (2017).

Akiyama, K, et al. First results from the M87 Event Horizon Telescope. I. The shadow of a supermassive black hole. *astronomy. G Lett.* **875**L1 (2019).

Reese, AG et al. Observational evidence from supernovae of the accelerating and cosmologically constant universe. *Astron. c.* **116**1009-1038 (1998).

Perlmutter, S et al. Ω and F measurements from 42 high redshift supernovae. *astronomy. c.* **517**565-586 (1999).

Burgess, C.B. The Cosmological Constant Problem: Why Dark Energy Is Hard to Obtain from Microphysics. in *100 Summer School of Physics: Post-Planck Cosmology* 149–197 (eds. Deffayet, C et al.) (Oxford University Press, 2015).

Horndeski, G.W. Quadratic tensor field equations in four-dimensional space. *Int J. Theor. Phys.* **10**363-384 (1974).

Vainshtein, A.I. For the uncoated gravitational mass problem. *Phys. Lett.* **B39**393–394 (1972).

Damour, T. & Polyakov, A.M.: Thread dilation and least coupling principle. *we eat. Phys. B* **423**532-558 (1994).

Khoury, J. and Weltman, A.; Chameleon Fields: Surprises await for gravity tests in space. *Phys. Rev. Litt.* **93**171104 (2004).

Hinterbichler, K. & Khoury, J. Symmetron Fields: Sifting Long-Range Forces Through Local Symmetry Restoration. *Phys. Rev. Litt.* **104**231301 (2010).

Amendola, L., Kunz, M. & Sapone, D. Measurement of the dark side (with weak lenses). *J. Cosmoll. astropart. Phys.* **04**013 (2008).

Bertschinger, E. & Zukin, P. Distinguish between modified gravity and dark energy. *Phys. Rev. D* **78**024015 (2008).

Pogosian L, Silvestri A, Koyama K. And Chow, J-B. How can deviations from general relativity be optimally identified in the evolution of cosmic perturbations? *Phys. Rev. D* **81**104023 (2010).

Gubitosi, G., Piazza, F. & Vernizzi, F. Effective field theory of dark energy. *J. Cosmoll. astropart. Phys.* **02**032 (2013).

Bloomfield JK, Flanagan EE, Park M, Watson S. Dark energy or modified gravity? Effective field theory approach. *J. Cosmoll. astropart. Phys.* **1308**010 (2013).

Gleyzes, J., Langlois, D. & Vernizzi, F. A standardized description of dark energy. *Int J. Mod. Phys. Dr* **23**1443010 (2015).

Bellini, E. & Sawicki, I. Maximum freedom at minimum cost: Large-scale linear structure in general modifications of gravity. *J. Cosmoll. astropart. Phys.* **07**050 (2014).

Zhao, G. -B., Pogosian, L., Silvestri, A. & Zylberberg, J. Searching for modified growth patterns using cross-sectional surveys. *Phys. Rev. D* **79**083513 (2009).

Hojjati, A., Pogosian, L. & Zhao, G.-B. Gravity testing with CAMB and CosmoMC. *J. Cosmoll. astropart. Phys.* **08**005 (2011).

Hu, B., Raveri, M., Frusciante, N. & Silvestri, A. Effective field theory of cosmic acceleration: an application in CAMB. *Phys. Rev. D* **89**103530 (2014).

Zumalacarregui, M., Bellini, E., Sawicki, I. & Lesgourgues, J. hi_class: Horndeski in a cosmological linear inequality solution regime. Preprint at https://arxiv.org/abs/1605.06102 (2016).

Song, Y. -S. et al. Integration of weak lensing and exotic velocity measurements in a test of general relativity. *Phys. Rev. D* **84**083523 (2011).

Saltas I.D., Sawicki I., Amendola L. and Kunz, M. Anisotropic stress as a signature of non-standard propagation of gravitational waves. *Phys. Rev. Litt.* **113**191101 (2014).

Pogosian, L. & Silvestri, A. What can cosmology tell us about gravity? Horndeski’s restriction to Σ and μ. *Phys. Rev. D* **94**104014 (2016).

Silvestri, A., Pogosian, L. & Buniy, R. V. A practical approach to cosmological perturbations in modified gravity. *Phys. Rev. D* **87**104015 (2013).

Espejo, J.; et al. Large-scale structure phenomena in numerical tensor theories: prior covariance *w*_{From}and Σ f *M* in Horndsky. *Phys. Rev. D* **99**023512 (2019).

Gleyzes, J., Langlois, D., Mancarella, M. & Vernizzi, F. Active theory of dark energy in redshift survey gauges. *J. Cosmoll. astropart. Phys.* **02**056 (2016).

Abbott, B.B. et al. Gravitational waves and gamma rays from a neutron star binary merger: GW170817 and GRB 170817A. *astronomy. c.* **848**L13 (2017).

Deffayet, C., Esposito-Farese, G. & Vikman, A. Covariant Galileo. *Phys. Rev. D* **79**084003 (2009).

Deffayet, C., Pujolas, O., Sawicki, I. & Vikman, A. Incomplete dark energy from kinetic gravitational braiding. *J. Cosmoll. astropart. Phys.* **10**026 (2010).

Linder, Non-Gravity EV. *J. Cosmoll. astropart. Phys.* **03**005 (2018).

Peroni S, Koyama K, Bogosian L, Raveri M, and Silvestri A. *Phys. Rev. D* **97**043519 (2018).

Zucca, A., Pogosian, L., Silvestri, A. & Zhao, G.-B. MGCAMB with massive neutrinos and dynamic dark energy. *J. Cosmoll. astropart. Phys.* **05**001 (2019).

Lewis, A. & Bridle, S. Cosmological parameters from the CMB and other data: a Monte Carlo approach. *Phys. Rev. D* **66**103511 (2002).

Lewis, A.; *GetDist: A Python package for Monte Carlo sample analysis* (2019); https://getdist.readthedocs.io